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A B S T R A C T

In this manuscript, we report the rich dynamics of the theoretical Brusselator model, which is driven by a
periodic external force. We observed and confirmed a variety of dynamical features with the most interesting
extreme events behaviour in the proposed system. The dynamics of the system are characterised by the
bifurcation diagram, Lyapunov exponent, phase portraits, and time series segments. The extreme events
behaviour is characterised by the probability distribution function, instantaneous phase calculation, and
Poincaré return map. Real-time hardware experiments were carried out using an analog electronic circuit,
and the outcomes of the experimental observations were confirmed with the numerically obtained results. To
the best of our knowledge, we believe that it is for the first time that the occurrence of extreme events has
been reported using both the numerical simulation studies and the real-time analog electronic experimental
observations on this forced Brusselator chemical model.
1. Introduction

In recent years, there has been a noticeable rise in attention paid to
investigating the intricate interplay between the complex dynamics and
the chemical systems inherent in oscillating reactions. These studies
have revealed various chaotic and non-equilibrium phenomena [1],
including mixed mode oscillations [2], complex oscillations, bursting
oscillations [3], bistability [4], intermittency, quasichaotic behaviour
within the reactions [5] and coupled chemical oscillators [6] reveal-
ing intriguing phenomena in the chemical systems [7]. Autocatalytic
reactions exert a profound influence on the stability and behaviour
of systems, engendering complex dynamics, multiple stable states,
and periodic oscillations. These phenomena collectively enrich the
captivating realm of chemical kinetics [8] and the exploration of
nonlinear reactions [9]. The Brusselator is a theoretical chemical model
introduced by I. Prigogine and his collaborators [10] to represent au-
tocatalytic chemical reactions with spatial oscillations. It resembles the
well-known Belousov–Zhabotinsky (BZ) reaction [11], both exhibiting
non-equilibrium behaviour with pattern formation and chemical oscil-
lations. Over the decades, the Brusselator model has been extensively
studied, shaping ideas on oscillations and pattern formation far from
thermodynamic equilibrium. It is a well-established system in the realm
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of non-equilibrium instabilities, with numerous research papers dedi-
cated to its exploration, and the model has been subject to extensive
investigation, encompassing limit cycles, Turing–Hopf bifurcation [12]
and coupled systems [13]. Tomita and his collaborators [14] introduced
an external forcing term to the Brusselator model, enabling the study of
its response to external perturbations. This addition unveils intriguing
and complex dynamics, including the emergence of multistability [15],
hysteresis and vibrational resonance [16], controlling chaos [17], non-
quantum chirality [18], control of a quasiperiodic route to chaos [19],
etc.

Events in dynamical systems that suddenly occur and exhibit an un-
usual dynamical phenomenon are referred to as rare events or extreme
events. Extreme events (EEs) refer to the sudden and random increase
in the magnitude of one or more of the state variables of the dynamical
system. They encompass a wide range of natural and human-made phe-
nomena, including tsunamis, cyclones, rogue waves [20], earthquakes,
droughts [21], chemical explosions, floods [22], stock market fluctu-
ations [23], pandemics [24] and certain transmissible diseases [25].
Despite the low probability of these rare events occurring, their result-
ing losses can be substantial. The prediction and analysis of extreme
events occurring in real-world problems have not been fully mastered
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yet. Recent studies have delved into understanding the occurrence of
such behaviour in dynamical systems [26–29]. Extreme events arising
in nonlinear dynamical systems mimic those observed in many physical
systems, including fibre optics, nonlinear optics, photonics [30,31],
financial systems [32,33], electronic oscillators [34,35], mechanical os-
cillators [36], chemical oscillators [37] and neural models [38]. While
studying nonlinear dynamical systems, the trajectory of a dynamical
system typically follows a bounded attractor. Occasionally, they deviate
significantly, causing a large magnitude of amplitude, spikes, or bursts
due to instability in their state space. These rare occurrences resemble
changes in the range of time series produced by the systems, which are
often characterised by the large deviations from the nominal behaviour
of a system [39]. To confirm these occurrences, specific thresholds
are determined by statistical analysis. The study of extreme events
in dynamical systems is a growing area of research, as scientists and
engineers are interested in understanding the mechanisms that lead
to these events and developing methods for predicting them [40],
predicting extreme events in dynamical systems is a challenging task,
even in deterministic systems. There have been some attempts to find
early warnings of extreme events [41,42], but success in this area has
been limited so far.

These rare events pose challenges due to limited data, making
models more difficult. Developing available mathematical models can
help us to understand the mechanisms behind the extreme events
and improve our ability to predict and manage them. Conversely,
the immediate hardware realisation of the nonlinear circuits capable
of producing a variety of chaotic oscillations presents a substantial
challenge for the future integration of chaos-based information systems.
Notably, the exploration of techniques for generating diverse intri-
cate chaotic oscillations, such as EEs, using uncomplicated electronic
devices has attracted considerable theoretical and practical attention.
The inquiry into creating the EEs with distinct electrical characteristics
is captivating, given their unique nature as electrical signals [34,35].
In continuation of the above, this study places its exclusive emphasis
on the emergence of extreme events or occasional large-amplitude
oscillations within the Brusselator chemical model when subjected to
external periodic perturbations and investigates the dynamical insta-
bility causing these events. In the realm of chemical oscillators, only a
limited number of experiments have provided evidence of their chaotic
nature. To further investigate in the present manuscript the extreme
events emerging from the Brusselator chemical model, we have de-
signed a simple analogue electronic circuit and studied their dynamics
experimentally in the laboratory. To the best of our knowledge, no prior
research has explored this phenomenon within the context of this model
or chemical oscillators.

This paper is organised as follows: In Section 2, we introduce the
mathematical model of the proposed system and analyse its linear
stability. In Section 3, we present the numerical study of the system
by varying the system control parameters and also demonstrate the
presence of extreme events in this model by representing unusually
large events in time series using a qualifying threshold and occasional
events in phase space. Further, we have plotted the probability distri-
bution and return map to illustrate the rarity of these events as well
as display the phase slips that occur during the extreme events. The
global behaviour of the model is studied through the two-parameter
bifurcation diagrams, which are given in Section 4. The experimental
evidence of extreme events in this model is presented in Section 5.
Finally, in Section 6, we draw our conclusions.

2. Mathematical model of brusselator

The Brusselator chemical model [10] is a trivial autonomous theo-
retical oscillator that mimics the autocatalytic reaction. The proposed
autonomous Brusselator model can be written as,

̇ = 𝑎 − (𝑏 + 1)𝑥 + 𝑥2𝑦
2

�̇� = 𝑏𝑥 − 𝑥2𝑦, (1)

where 𝑎 and 𝑏 are constants of system parameters and 𝑥 and 𝑦 repre-
sent the system state variables of the model (Eq. (1)). Then we have
introduced an external periodic forcing term [14] to the Brusselator
autonomous model of Eq. (1). The resultant system is a second-order
nonautonomous differential equation as follows:

�̇� = 𝑎 − (𝑏 + 1)𝑥 + 𝑥2𝑦 + 𝑓 sin(𝜔𝑡)

�̇� = 𝑏𝑥 − 𝑥2𝑦. (2)

The system of Eq. (2) is subjected to an external driving force with an
amplitude 𝑓 and frequency 𝜔. Thus, the present model is composed
of two simple ordinary differential equations with external forcing,
and the resulting oscillations are purely temporal (time-dependent).
For understanding the dynamics of our proposed system, we integrated
Eq. (2) using the fourth-order Runge–Kutta method with integration
time steps 𝑑𝑡 = 0.01, initial condition 𝑥(0) = 0.01, and 𝑦(0) = 0.02.

2.1. Linear stability analysis

The stability criterion and the nature of bifurcational analysis on
the Brusselator model were reported [10,43]. The equilibrium point
for the system Eq. (2) is obtained by setting the derivatives of 𝑥 and
𝑦 with respect to time equal to zero and without any external force.
The eigenvalues of the system are 𝜆1,2 = 1

2 (−(𝑥
2 + 𝑏 + 1 − 2𝑥𝑦) ±

(𝑥2 + 𝑏 + 1 − 2𝑥𝑦)2 − 4𝑥2). Thus, the system of Eq. (2) has only one
quilibrium point, which is (𝑥0, 𝑦0) = (a, b/a). The eigenvalues at the
quilibrium point are 𝜆1,2𝑒𝑞𝑢 = 1

2 (−(𝑎
2 − 𝑏 + 1) ±

√

(𝑎2 − 𝑏 + 1)2 − 4𝑎2).

The stability of the system depends on the relationship between 𝑏 and
𝑎2 + 1. If 𝑏 > (𝑎2 + 1), then 𝜆1,2 > 0, this indicates that the equilibrium
point is unstable. If 𝑏 < (𝑎2 + 1), then 𝜆1,2 < 0, this indicates that
the equilibrium point is stable. If 𝑏 = (𝑎2 + 1), then 𝜆1,2 = 0. This
indicates that the equilibrium point is either a centre or an elliptic point,
with oscillatory behaviour. The stability plot for the (𝑎 - 𝑏) plane for
𝜆1,2𝑒𝑞𝑢 is shown in Fig. 1. The different colour zones are represented by
different stability states, say unstable node (USN), unstable focus (USF),
stable focus (SF), and stable node (SN). The critical line that represents
centre stability is mentioned in an orange line in between USF and SF.
From this stability analysis, the system stability changes with respect to
parameters 𝑎 and 𝑏 since there exists a Hopf bifurcation for 𝑏 = 𝑎2 + 1.

3. Numerical results

To begin with, numerically integrate and analyse the extreme events
(EEs) in a system of Eq. (2) by examining its dynamics through a
bifurcation diagram depicted in Fig. 2(a) and its corresponding max-
imum Lyapunov exponent in Fig. 2(b) by varying the system control
parameter 𝑏 within the range of 𝑏 ∈(1.0, 1.2) and chosen the other
system parameters are constant as 𝑎 = 0.2, 𝑓 = 0.06, and 𝜔 = 0.7 with
the initial conditions as 𝑥0, 𝑦0 = (0.01, 0.02). The bifurcation diagram
was computed to detect the large peak values of state variable 𝑥 in
each value of the parameter 𝑏 scanning. To distinguish the extreme
events (EEs) from the normal events, a threshold height (𝐻𝑠) of large
amplitude oscillation is determined statistically [44], This statistical ap-
proach enables the identification and analysis of the occurrence of EEs
in the system. The threshold value 𝐻𝑠 is obtained by considering the
dynamical aspects of the system observable, which involves measuring
the significant large deviations away from the mean value of the state
variable of the system. In other words, the EEs are identified as having
large amplitudes substantially higher than the average value. The 𝐻𝑠
is calculated as follows: 𝐻𝑠 = ⟨𝑥𝑚𝑎𝑥⟩ + 𝑛𝜎𝑥𝑚𝑎𝑥 , where ⟨𝑥𝑚𝑎𝑥⟩ represents
the mean of the peak values of state variable 𝑥, 𝜎𝑥𝑚𝑎𝑥 is the standard
deviation of the 𝑥𝑚𝑎𝑥, and 𝑛 is an integer specific to the system, typically
ranging from 4 to 8 for extreme events, whose value determines and
distinguishes extreme events from bounded chaos. To calculate 𝐻 for
𝑠
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Fig. 1. The stability plot of the equilibrium points in the (𝑎 − 𝑏) plane for 𝜆1,2𝑒𝑞𝑢
by

various values of parameters 𝑎 and 𝑏. Different colours, such the violet for stable
node (SN), green for stable focus (SF), sky-blue for unstable focus (USF) and yellow
for unstable node (USN), are used to represent different types of stability. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 1
The dynamics of the system (2) are studied by varying the control parameter 𝑏, while
keeping other system parameters 𝑎 = 0.2, 𝑓 = 0.06, and 𝜔 = 0.7 constant.

Range of 𝑏 Observed phenomenon

1.0 < 𝑏 < 1.0971 Periodic attractor (PD)

1.0972 < 𝑏 < 1.1092 Bounded chaotic attractor (BC)

1.1093 < 𝑏 < 1.1151 Extreme events for 𝑛 = 6 (EEs)

1.1093 < 𝑏 < 1.1214
1.1233 < 𝑏 < 1.1290 Extreme events for 𝑛 = 4 (EEs)
1.1309 < 𝑏 < 1.1408

1.1409 < 𝑏 < 1.2 Large amplitude chaotic attractor (LAC)

a long run with iterations of 108 time units, the system dynamics must
be allowed to evolve past transient states. In this Fig. 2(a), we plotted
the threshold height 𝐻𝑠 for 𝑛 = 4 and 𝑛 = 6. By setting a threshold
height, the extreme events can be distinguished from the normal events
based on their large amplitudes, with EEs being those peaks that exceed
the 𝐻𝑠 value. In this one-parameter bifurcation diagram shown in
Fig. 2(a), the system undergoes a transition from a regular attractor
to a chaotic attractor via the usual period doubling (PD) route. The
system’s dynamical summary, derived from the bifurcation analysis and
accompanied by its corresponding Lyapunov exponents, is presented in
Table 1 and shows the ranges within which the system’s dynamics exist.

The numerically obtained typical time series (𝑥(𝑡)) is shown in
Fig. 3(a), and the corresponding phase portrait in the (𝑥 − 𝑦) plane
of the bounded chaotic attractor is depicted in Fig. 3(b) for the value
of 𝑏 = 1.1092. In Fig. 3(a) and (b), we observe that the chaotic
behaviour remains confined within a specific region, characterised
by relatively small amplitudes. Throughout the entire iteration, the
system’s trajectory shows no evidence of surpassing the threshold value,
where we set the basic criterion for extreme events (EEs) as 𝑛 = 4.
The threshold value of the bounded chaos for the state variable 𝑥(𝑡),
alculated from 𝐻𝑠 given earlier, is 𝐻𝑠(𝑛 = 4) = 0.4112 for 𝑏 = 1.1092.

Further, in the one-parameter bifurcation diagram of Fig. 2(a), when
the control parameter 𝑏 is varied, we find the occurrence of extreme
events embedded in the bounded chaotic attractor. Interestingly, when
the parameter 𝑏 reaches the critical value of 1.1093, there is a sudden
chaotic expansion observed in the 𝑥𝑚𝑎𝑥 variable. This expansion is
substantial enough to surpass the qualifying threshold (𝐻𝑠) value. This
3

phenomenon has been graphically depicted in Fig. 2(a) (with indicate w
arrow as EEs) for two distinct scenarios when 𝑛 = 4 (green colour)
and 𝑛 = 6 (red colour). The typical extreme events can be clearly
seen in the time series plot of the 𝑥(𝑡) variable shown in Fig. 3(c)
nd the corresponding phase portrait in the (𝑥 − 𝑦) plane (Fig. 3(d))
or the value of 𝑏 = 1.1125. Here, the peaks in the variable 𝑥(𝑡) with
mplitudes four times and six times as large as the normal amplitudes
re observed. In Fig. 3(c) and (d), we observe a significant expansion in
he region of bounded chaos. This expansion in the time series exceeds
alculated threshold values: 𝐻𝑠 = 1.7763 for 𝑛 = 4 and 𝐻𝑠 = 2.5012
or 𝑛 = 6, as indicated by the horizontal dashed red colour line in
ig. 3(c), and this sudden expansion in the system is characterised as an
xtreme events. As the control parameter 𝑏 is varied further, the system
ynamics bifurcate as non-extreme events with large amplitude chaotic
ehaviour are indicated as LAC in Fig. 2(a).

.1. Statistical characterisation

We applied the statistical properties to characterise and confirm the
xtreme events (EEs) present in the Brusselator system of Eq. (2). In
ccordance with the findings in Refs. [28,32,45], we have plotted the
robability distribution function for the state variable 𝑥(𝑡), we have
aken the 𝑡-span length for a long run with iterations of 2 × 107 time
nits, allowed the system to evolve past transient states for constant
arameters 𝑎 = 0.2, 𝜔 = 0.7, 𝑓 = 0.06 and various values of the
arameter 𝑏 and confirmed that the shape of the distribution does not
hange with respect to the t-span length. Fig. 4(a) shows the PDF for
ominal chaos is bounded within a low range of 𝑥𝑚𝑎𝑥 values below the
𝑠 mark (vertical dashed black colour line), as expected for 𝑏 = 1.1092,

ignifying a non-extreme event. Fig. 4(d) reveals a continuously heavy
ail distribution, and it surpasses the threshold represented in vertical
otted black colour line. This indicates the occurrence of extreme
vents, which confirms the low probability of the occurrence of large-
mplitude events beyond the 𝐻𝑠 mark (vertical black colour line) for
= 1.1125, which is calculated for 𝑛 = 4 and 𝑛 = 6 using the respective

emporal data.
Further, we have calculated the return map as an additional tool for

ifferentiating the bounded chaotic (BC) oscillations from the extreme
vents (EEs) oscillations. In Fig. 4(b), (e), we plotted the Poincaré
eturn map, which is obtained by plotting the first peak values 𝑥max𝑛
gainst the next peak values 𝑥max𝑛+1 for the system (2). We observe
distinct behaviour in the bounded chaos for 𝑏 = 1.1092, where the

eturn map remains locked and does not cross the 𝐻𝑠 (plotted as a
ashed red line). This confinement to the bounded region signifies the
resence of non-extreme events, as shown in Fig. 4(b). Interestingly, as
e change the parameter towards 𝑏 = 1.1125, we notice a significant

ncrease in amplitude of 𝑥𝑚𝑎𝑥, leading to large events that cause the
eturn map points to exceed the 𝐻𝑠 (exceeding points are plotted as
ed hollow circles and 𝐻𝑠 as a dashed red line). This crucial observation
alidates the existence of extreme events in system Eq. (2), as shown
n Fig. 4(e). In addition, we plotted a projection of 3D phase plots in
ig. 4(c) and (f) to illustrate how the system transitions from bounded
haos (Fig. 4(c)) to extreme events (Fig. 4(f)) by including the external
eriodic force sin(𝜔t) as the third axis, and Fig. 4(f) represents the
vents that cross the threshold 𝐻𝑠 indicated in red colour.

To better understand the system’s behaviour, we applied a Hilbert
ransform to the variable 𝑥(𝑡) and an external periodic signal sin(𝜔t) as
he third axis, as Fig. 4(f) represents. This allowed us to determine their
nstantaneous phase and subsequently find the difference between these
nstantaneous phases, thus calculating the phase difference 𝛿𝜙. During
he bounded chaos, we observed that the system remained phase-locked
o the external periodic force. However, during the occurrence of large
vents, particularly extreme events, phase slips were found to occur
ecause the system temporarily lost its phase-locking to the external
eriodic force, leading to a sudden and transient shift in its phase,

hich is shown in Fig. 5.
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Fig. 2. (a) One-parameter bifurcation diagram in the (𝑏− 𝑥𝑚𝑎𝑥) plane. The blue dot represents the maxima (𝑥𝑚𝑎𝑥) of the state variable 𝑥. The green and red colour lines for 𝑛 = 4
and 𝑛 = 6 respectively, show the critical threshold value calculated from 𝐻𝑠 = ⟨𝑥𝑚𝑎𝑥⟩ + 𝑛𝜎𝑥𝑚𝑎𝑥 for identifying the extreme events. (b) corresponding maximum Lyapunov exponent
in the (𝑏− 𝜆𝑚𝑎𝑥) plane. The other system parameters are 𝑎 = 0.2, 𝑓 = 0.06, and 𝜔 = 0.7 constant. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Fig. 3. (online colour) The left and right panels display the time evolution of the state variable 𝑥(𝑡) and the corresponding typical phase portraits in the (𝑥−𝑦) planes, respectively.
(a) and (b) demonstrate the emergence of non-extreme events for 𝑏 = 1.1092; (c) and (d) the extreme events for 𝑏 = 1.1125 with constant parameter values 𝑎 = 0.2, 𝜔 = 0.7, and
𝑓 = 0.06. Here, the horizontal dashed red lines represents the threshold height 𝐻𝑠 for 𝑛 = 4 and 𝑛 = 6.
4. Two parameter bifurcation

The overall system dynamics across the parameter space (𝑎−𝑏) were
depicted in Fig. 6, where 𝑎 ∈ [0, 0.28] and 𝑏 ∈ [1.05, 1.5]. Our focus
is to identify and distinguish the regions of extreme events (EEs) from
non-extreme events (NEEs). To begin with, we found that the EEs are
exhibited when the system demonstrates chaotic behaviour. Hence, to
4

distinguish the EEs region from the other region as a function of the
parameters 𝑎 and 𝑏, we estimated the threshold height (𝐻𝑠). For a long
run with iterations of 108 time units, if the system shows nominal chaos
with the maximum values of the 𝑥-variable (𝑥𝑚𝑎𝑥) exceeding a threshold
height for 𝑛 = 4, then the dynamics in that specific region are marked as
EEs (represented by the red colour points in Fig. 6(a). Conversely, if the
system does not surpass 𝐻 , then these parameter values are marked
𝑠



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 180 (2024) 114582

5

S.V. Manivelan et al.

Fig. 4. (online colour) The left panel displays the probability distribution function (PDF). The middle panel displays Poincaré return map in the (𝑥𝑛 − 𝑥𝑛+1) plane, and the right
panel shows the projection of 3D phase plots, where the third axis represents the external periodic force sin(𝜔t). For bounded chaos ((a)–(c)), 𝑏 = 1.1092 and for extreme events
((d)–(f)), 𝑏 = 1.1125.

Fig. 5. Instantaneous phase slips analysis for the extreme events data for 𝑏 = 1.1125. (a) EEs time series of the 𝑥(𝑡) variable; (b) Hilbert transformed signals real (green) and
imaginary (red colour); and (c) phase slips analysis for the same time duration. The vertical grey dashed line demonstrates the slips at extreme events. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. The two-parameter diagram in the parameter space of (𝑎, 𝑏) for (a) threshold value (𝐻𝑠), where the red colour points represents the parameter values for the existence
of EEs, the grey colour point indicates the NEEs states and (b) 𝑥𝑚𝑎𝑥 demonstrates the emergence of distinct states. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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as part of the non-extreme events region (represented by grey colour
points in Fig. 6(a). Throughout this analysis, we verified the emergence
of these extreme events within the specified parameter ranges of 𝑎
nd 𝑏 using time series data and one-parameter bifurcation diagrams.
o confirm this with a two-parameter bifurcation for 𝑥𝑚𝑎𝑥 depicted

in Fig. 6(b), the dark region indicates a low height amplitude of the
state variable 𝑥𝑚𝑎𝑥, suggesting the presence of periodic oscillations
and bounded chaos in those regions. On the other hand, the colour
gradient from violet to yellow represents high amplitudes of 𝑥𝑚𝑎𝑥. These
high amplitudes indicate the occurrence of expansion in 𝑥𝑚𝑎𝑥. From
igs. 6(a) and 2(a), we can deduce that extreme events are found to be
resent only at the initial stage of the sudden expansion of 𝑥𝑚𝑎𝑥. As time
rogresses, the amplitudes tend to fall more frequently, leading them
o no longer qualify as extreme events. Figs. 6(a) and (b), it is evident
hat in the region where parameter 𝑎 ∈ (0, 0.13) and 𝑏 ∈ (1.3, 1.5), there
s a noticeable presence of high amplitudes (red–yellow colour) of 𝑥𝑚𝑎𝑥
nd a high probability of extreme events occurring in this range.

. Experimental observations of extreme events

Recently, experimental circuit implementation has offered an al-
ernative avenue to investigate or verify the feasibility of physical
mplementations of theoretical dynamical models and to apply them
n practical scenarios. To analyse the circuit dynamics and compare
hem with the numerical studies of a normalised model, it is derived
y performing circuit variable substitutions and parameter transforma-
ions [35]. Therefore, in this section, we have designed a simple analog
ircuit and implemented it in the laboratory to validate the obtained
umerical results of the two-dimensional nonautonomous Brusselator
odel given in the Eq. (2) described earlier. According to the above
umerical analysis, Fig. 7 shows the schematic of experimental circuit
ealisation in the top panel, and the complete analog circuit assembled
sing readily available discrete components was utilised to build the
roposed chaotic circuit of the Brusselator model of Eq. (2), which is
hown on a breadboard in the bottom panel. The resulting circuit is
traightforward, cost-effective, and can also serve laboratory experi-
ents and educational purposes for exploring the innovative effects in

he dynamics of complex classical oscillators, as mentioned earlier. This
ircuit consists of linear resistors, capacitors, and 𝜇A741C operational
mplifiers. The nonlinear functions in Eq. (2) are generated by using
D633JN analog multipliers. The operational amplifiers and multipli-
6

rs operate with supply voltages of ±12 V and saturated voltages of
9.5 V. The arbitrary waveform generator (Agilent 33500B) is taken as
he external periodic forcing voltage source 𝑓 (𝑡) = 𝐹𝑠𝑖𝑛(𝛺𝑡).

By applying Kirchhoff’s circuit laws to the designed circuit (top
anel) of Fig. 7, we get the following circuital equations:
𝑑𝑣𝐶1

𝑑𝑡
= 1

𝑅4𝐶1
𝐸 − 1

𝑅1𝐶1
𝑣𝐶1

+ 0.01
𝑅2𝐶1

𝑣2𝐶1
𝑣𝐶2

+ 1
𝑅4𝐶1

𝐹𝑠𝑖𝑛(𝛺𝑡), (3)

𝑑𝑣𝐶2

𝑑𝑡
= 1

𝑅6𝐶2
𝑣𝐶1

− 0.01
𝑅5𝐶2

𝑣2𝐶1
𝑣𝐶2

. (4)

ere, 𝑣𝐶1
and 𝑣𝐶2

are the voltages developed across the capacitors 𝐶1
nd 𝐶2 respectively, represented by the circuit state variables.

Similar to the numerical simulation studies in Section 3, we have
bserved the occurrence of EEs and bounded chaos followed by the
eriod doubling route in experimentally also and the values of various
ircuit components are pre-determined in the circuit depicted in Fig. 7.
or this breadboard experiment, specific circuit component values can
e chosen using an appropriate time scale [34]. The circuit’s time-
onstant-related circuit elements have been optimised to 𝑅 = 100 kΩ
nd 𝐶 = 2.2 nF. Further, we have fixed the values of other circuit
lements as follows: The capacitance values of the capacitors are fixed
s 𝐶1 = 𝐶2 = 2.2 nF. The resistances of resistors are set as follows:

𝑅1, 𝑅3, 𝑅6, 𝑅7, 𝑅8 = 10 kΩ, 𝑅2 = 6.8 kΩ, 𝑅5 = 3.3 kΩ, and 𝑅4 = 100 kΩ.
he amplitude 𝐹 = 4.5 V and frequency 𝛺 = 6.2 kHz of the external

periodic voltage source. The gains of the analog multipliers 𝑀1 and 𝑀2
are (1∕10) V. It is worth noting that all the circuit components have
tolerances of ±5 %. Also, we varied the resistance values of 𝑅4 and 𝑅6
in the breadboard circuit during the experimental observations and to
match the selected control parameters 𝑎 and 𝑏, as specified in Eq. (2),
based on the results of numerical simulation studies.

Specifically, in the laboratory experiments, a precision potentiome-
ter is utilised for the adjustable feedback resistor 𝑅4 in the first inte-
grator (IC1) of the circuit (Fig. 7 (top panel), which is considered the
control parameter. The tunable potentiometer has a resistance of 100
kΩ to adjust the external bias (𝐸) in the experimental observations. The
choice of these values is justified by our wish to use the same sets of
system parameters for both numerical and experimental studies. The
resistance of the variable resistor 𝑅4 is gradually tuned; for different
values of 𝑅4, the circuit generates different attractors experimentally.

In order to begin our experimental study, in Fig. 7, when the
resistance 𝑅4 is set to 22.5 kΩ, the oscillator generates periodic limit
cycle oscillations. When the control parameter 𝑅4 is varied in the

range of (23 kΩ ≤ 𝑅4 ≤ 55.5 kΩ), we observed the period-doubling
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Fig. 7. (online colour) A schematic diagram of analog electronic circuit realisation (top panel) and the corresponding analog circuit is implemented on a breadboard (bottom
panel) of the Brusselator model of Eq. (2).
sequences; the range (55.5 kΩ ≤ 𝑅4 ≤ 78.0 kΩ), chaotic regime, and
the range (78.0 kΩ ≤ 𝑅4 ≤ 82.6 kΩ), extreme events oscillations. The
experimentally observed results are summarised in Fig. 8. Snapshots of
the experimental time series and phase portraits are captured using the
analog oscilloscope for different values of the circuit control parameter,
the variable resistance 𝑅4. The experimental circuit outputs can directly
be displayed on an oscilloscope by feeding the output voltages 𝑣𝐶1

and
𝑣𝐶2

to connect them to the X and Y channels of the dual-channel analog
oscilloscope (ScientiFic SM 410) with 1 V/div in the X direction and 1
V/div in the Y direction. The experimentally obtained time series of
voltage 𝑣𝐶1

(𝑡) (Fig. 8a(i)) and corresponding the typical phase portrait
of bounded chaotic attractor in the (𝑣𝐶1

− 𝑣𝐶2
) plane (Fig. 8a(ii)) for

𝑅4 = 56.5 kΩ. Continuing to vary the resistance 𝑅4 in the range of
𝑅4 (78.0 kΩ, 83.0 kΩ), we observe the occurrence of extreme events
embedded within the bounded chaotic attractor, as shown in Fig. 8(b).
The temporal time evolution plot for the voltage 𝑣𝐶1

(𝑡) and correspond-
ing the typical phase portrait of extreme events in the (𝑣𝐶1

− 𝑣𝐶2
)

plane for 𝑅4 = 80.5 kΩ as shown in Fig. 8b(i) and b(ii). Obviously,
the experimentally captured results of chaotic behaviour and extreme
events oscillations agree with those shown in Fig. 3 by the numerical
simulations.

6. Conclusion

In this article, we have presented the dynamics of a Brusselator
chemical system driven by an external periodic force, studied both
numerically and experimentally. We have investigated and confirmed
many dynamical phenomena, including the well-known period dou-
bling, chaotic oscillations, and the most intriguing extreme events
7

behaviour in the proposed chemical model. The one-parameter bifurca-
tion diagram, maximum Lyapunov exponent, phase portraits, and time
series segments characterise the system’s dynamics, while the probabil-
ity distribution function, the instantaneous phase calculation, and the
Poincaré return map characterise the extreme events behaviour. Ad-
ditionally, a two-parameter bifurcation diagram is used to distinguish
extreme events within a two-parameter space. Further, the real-time
hardware analog electronic experiments were carried out in the lab-
oratory, and the findings confirmed the numerically obtained results.
To the best of our knowledge, this is the first analog electronic exper-
imental study on the Brusselator chemical model with the observation
of extreme events. These results are giving more insight into how
to construct real-time experiments with chemical reaction setups and
avoid external stimuli. The system creates intermittency peaks [46] and
multistability [47]. However, in our work, we have reported that ex-
ternal periodic forces cause very large oscillations and lead to extreme
events for appropriate system parameter regimes. Adding the external
periodic force to the Brusselator mathematical model is an initial
assumption, and it helps to understand the real chemical experiments
for the Brusselator autocatalytic reaction. The external periodic force
has been applied to the state variable 𝑥. The autocatalytic nature of the
system is evident in the state variables 𝑥 and 𝑦, which evolve chaotically
with extreme event oscillations. However, due to the addition of the ex-
ternal periodic force, the dimensions are increased, resulting in chaotic
oscillations with rich dynamical behaviours. These intriguing results,
such as extreme events and reverse period doubling, will be replicated
in real Brusselator experiments to uncover the hidden dynamics in the
near future.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 180 (2024) 114582S.V. Manivelan et al.
Fig. 8. (online colour) Experimentally captured (i) the temporal time evolutions of 𝑣𝐶1(𝑡) (horizontal axis 0.5 ms, vertical axis 0.5 mV/div) and (ii) the phase portraits in the
(𝑣𝐶1

−𝑣𝐶2
) plane of Brusselator model (horizontal axis 0.5 mV/div, vertical axis 0.5 mV/div). (a) bounded chaotic attractor for 𝑅4 = 5.65 kΩ and (b) extreme events for 𝑅4 = 8.76 kΩ.
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